If $c$, $n$, and $m$ are natural numbers greater than or equal to 2, and if $x$ and $y$ are positive real numbers, then $\sqrt[n]{x^n} = x$ $\sqrt[n]{xy} = \sqrt[n]{x} \sqrt[n]{y}$ $\sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}$