For data from [[exponential distribution]], with its rate parameter $\lambda$, let the [[prior]] distribution on $\lambda$ be a [[gamma distribution]], then the [[posterior]] distribution will also have the gamma distribution.
$\Gamma(\alpha, \beta) \to \Gamma(\alpha + n, \beta + n \bar x)$
**Likelihood**
$
L(\lambda | \mathbf{x}) = \lambda^n e^{-\lambda \sum x_i}
$
**Prior**
$
\pi(\lambda) \propto \lambda^{\alpha-1} e^{-\beta \lambda}
$
**Posterior**
$
\pi(\lambda | \mathbf{x}) \propto \lambda^{(\alpha+n)-1} e^{-(\beta + \sum x_i) \lambda}
$
See the [[Jeffreys' prior for the exponential distribution]].